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Abstract

The paper addresses the inverse problem where source strengths are back-calculated from a sound
pressure field sampled at several points. Regularization techniques, such as singular value discarding or
Tikhonov regularization, are commonly used to improve estimates of source strength in such situations.
However, over-regularization can result in even worse errors. A simple procedure is proposed here to
compensate for errors of over-regularization. The basis is to constrain the solution such that the spatial
mean of the measured and reconstructed sound pressure are equal. In other words, to set the overall sound
power of the equivalent (calculated) sources equal to that of the real source. It is argued that the overall
sound power is the most stable and reliable quantity on which to base source strength estimates. Examples
of both singular value discarding and Tikhonov regularization are given.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

There has recently been considerable interest in acoustic inverse problems [1–3] in which
unknown acoustic source strengths are calculated from an acoustic field sampled at several points.
The analogous problem also occurs in inverse vibration problems where unknown forces are
inferred from a measured velocity field [4–6].
Such inverse solutions usually require some form of regularization to prevent amplification of

measurement errors due to ill conditioning. Two common methods are singular value discarding
and Tikhonov regularization. In the former, ‘unreliable’ singular values are discarded, and in the
latter singular values are weighted according to their reliability using a regularization parameter b:
In both cases, regularization can improve the accuracy of the calculated source strengths, but too
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much regularization can result in even worse errors [1,3].Therefore, the choice of regularization
parameter is critical.
This paper is based on the observation that with both forms of regularization the spatial

average of the reconstructed and measured sound pressure are never equal. (For convenience, the
spatial average sound pressure will henceforth be referred to simply as the ‘mean’ pressure.) It is
argued that the mean sound pressure is the most stable measured quantity relating to a sound
source. For example, depending on the positioning of the measurement points, the sound power
of a source is proportional to the mean sound pressure, and nearly all methods of determining
sound power rely on this fact. It would therefore seem sensible to constrain the regularized
solution such that the reconstructed and measured mean pressure are identical.
In this paper, a simple procedure is described to compensate for the ‘missing’ or ‘de-

emphasized’ singular values. This yields a robust solution to the source strengths, even when there
is over-regularization that would normally result in significant errors.

2. Singular value discarding

An example of the inverse problem to be solved is shown in Fig. 1: the sound field, sampled at
NR positions around the source, is assumed to be the result of NS monopoles. The reconstructed
sound pressure #p is obtained from

#p ¼ Hq; ð1Þ
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Fig. 1. Motor showing positions of monopoles forming equivalent source, and microphone positions for free field

measurements.
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where q is the as yet unknown vector of source strengths, and H is the (NR � NS)
matrix of transfer functions. The vector q effectively defines an equivalent source system,
in that q is solved such that the sound field it generates is as close as possible to that of the
real source.
The usual method of solution involves minimizing the squared error between the reconstructed

pressure vector #p and the measured pressure vector p: Eq. (1) is written in terms of the singular
value decomposition of the transfer function matrix H; i.e.,

#p ¼ Hq ¼ U � R � VHq; ð2Þ

in which the columns of U and V are the output and input singular vectors, respectively, and the
superscript H indicates Hermitian transpose (conjugate transpose). The matrix R is diagonal,
containing the singular values of H: Pre-multiplying by UH and using the unitary property
(UHU ¼ I) the equation is recast into a system of uncoupled input–output equations:

#r ¼ Rs; ð3Þ

where #r ¼ UH #p is a ðNR � 1Þ column vector quantifying the participation of each of the output
singular modes in the overall reconstructed sound field. s ¼ VHq is a ðNS � 1Þ vector, as yet
unkonwn, which quantifies the participation of the input modes to the excitation. The
transformed source strength vector s is obtained by substituting in the measured pressure vector
and inverting Eq. (3):

s ¼ Rþr; ð4Þ

where r ¼ UHp is now obtained from the measured pressure, and Rþ is the pseudo-inverse of R:
Eq. (4) can also be expressed term by term as

sT ¼
1

s1
r1

1

s2
r2 ?

1

sNS

rNS

� �
; ð5Þ

in which ri is the ith element of r; and si the corresponding singular value. Large errors may occur
in the solution when some of the si are small because the terms 1=si become large and may
amplify errors in the corresponding ri:
In singular value discarding such errors are avoided by discarding unreliable terms (those with

smallest singular values) to give a truncated vector sn given by

sTn ¼
1

s1
r1

1

s2
r2 ?

1

snS

rnS

� �
nSoNS: ð6Þ

The reconstructed sound pressure at the measurement points #p is obtained by substituting a
solution s or sn into Eq. (2):

#p ¼ U � R � s; ð7aÞ

#pn ¼ U � R � sn; ð7bÞ
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where #p and #pn are the reconstructed sound fields obtained from the unregularized and regularized
solution, respectively.
At this point consider the mean reconstructed pressure which, for the unregularized solution, is

obtained by pre-multiplying Eq. 7(a) by its own conjugate transpose:

XNR

i¼1

#pij j2¼ #p
H � #p ¼

XNS

j¼1

s2j sj

�� ��2¼XNS

j¼1

s2j
1

s2j

 !
rj

�� ��2¼XNS

j¼1

rj

�� ��2; ð8Þ

where rj are the elements of r from Eq. (6), and sj the corresponding elements of s. The termPNS

j¼1 rj

�� ��2 is the contribution of the first NS output modes to the pressure. For a determined system
ðNR ¼ NSÞ;

PNS

j¼1 rj

�� ��2¼PNR

k¼1 pkj j2; i.e., the mean measured and reconstructed pressures are equal.
For an overdetermined systemðNR > NSÞ;

PNS

j¼1 rj

�� ��2pPNR

k¼1 pkj j2; i.e., the mean reconstructed
pressure is less than or equal to the mean measured pressure, although in practice the difference is
usually small. (Under-determined systems ðNRoNSÞ are not commonly used and will not be
considered.)
In a similar way, the mean reconstructed pressure from the regularized solution at the same

points is given by

XNR

i¼1

#pij j2¼ #p
H � #p ¼

XnS

j¼1

rj

�� ��2; nSoNSrNR: ð9Þ

Comparing Eqs. (8) and (9) it is seen that when singular values are discarded as part of the
regularization, the reconstructed mean pressure is expressed as a truncated series. Since all terms
in the series are positive, the regularized solution always underestimates the measured mean
pressure, and increasingly so the more terms are discarded.
At this point it should be appreciated that in most laboratory measurements it is not

background noise that causes error in the measured pressure spectrum. Rather, it is random
errors, particularly phase error due to imprecise positioning of microphones and their inherent
phase mismatches. Such errors do not introduce additional energy into the system, so the
measured mean pressure is energetically correct. However, the random errors manifest as an
incorrect distribution of this energy amongst the output vectors, in particular the contributions of
higher order output modes tend to be exaggerated. Thus, the measurements can be said to contain
errors in ‘shape’ rather than in ‘level’.
This being the case, the underestimate in the mean sound pressure of the regularized

solution is equivalent to saying that the equivalent source always has a lower sound power than
the real source when singular value discarding is employed. This is not ideal because the sound
power is the most stable and reliable quantity relating to the source. We would like to ensure
that whatever the differences between the real and equivalent sources, at least their sound power
is equal.
This can be achieved by defining a correction factor c to make the right side of Eq. (9) equal to

the measured mean pressure. Thus,

c2
Xns

j¼1

rj

�� ��2¼XNR

i¼1

pij j2 ð10Þ
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or

c ¼
XNR

i¼1

pij j2=
Xns

j¼1

rj

�� ��2" #1=2
: ð11Þ

Thus, by multiplying the remaining singular values by the factor c prior to evaluating Eq. (6),
the sound power of the equivalent and real sources will always be equal for any degree of
truncation. This compensation procedure is the main novel feature of this paper.
An example of this procedure now follows, using the set-up shown in Fig. 1. The equivalent

source consists of four monopoles whose complex volume velocity is to be determined from seven
microphone readings. The measurements are conducted in free field so H is calculated from the
freefield Green function. Fig. 2 shows the mean measured pressure and that reconstructed with 1
and 2 singular values discarded. This illustrates Eq. (9) in that the more singular values are
discarded, the more the mean pressure is underestimated: the discarding of certain modes has
resulted in a loss of energy to the system. The compensated solution (not shown), however,
coincides exactly with the measured mean.

3. Application to Tikhonov regularization

A similar analysis to the above can be carried out for Tikhonov regularization. Here rather than
discarding singular values they are de-emphasized by introducing the parameter b: The solution
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Fig. 2. Mean reconstructed sound pressure: ..... unregularized; —— one; – � – � – two singular values discarded.
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corresponding to Eq. (6) is then given by

sTt ¼
s1

s21 þ b


 �
r1

s2
s22 þ b


 �
r2 ?

sNS

s2NS
þ b

 !
rNS

" #
; ð12Þ

where the subscript t indicates that the solution is Tikhonov regularized. Following the same steps
that led to Eq. (8), the mean reconstructed pressure is given by

XNR

i¼1

#pij j2¼ #p
H � #p ¼

XNS

j¼1

s2j sj

�� ��2¼XNS

j¼1

s2j
s2j þ b

 !2

rj

�� ��2: ð13Þ

Thus,
PNR

i¼1 #pij j2-
PNS

j¼1 rj

�� ��2 as b-0 giving the same result as in Eq. (8) for the unregularized
case. However,

PNR

i¼1 #pij j2-0 as b-N; indicating that a large underestimate of mean pressure
could result from choosing too high a value for b:
A similar compensation procedure can be employed, for which the correction factor

corresponding to that in Eq. (11) is

ct ¼
XNR

i¼1

pij j2=
XNS

j¼1

s2j
s2j þ b

 !2

rj

�� ��2
2
4

3
5
1=2

: ð14Þ

By way of example, Fig 3a compares the reconstructed sound pressure around the source with
the measured pressure for varying values of b=s2: The case b ¼ 0 is the unregularizsed solution
and gives the most detailed spatial patterns. The more regularization is employed, the more the
solution is smoothed, giving less emphasis to the detail (which is most likely to contain noise).
However, at the same time there is also an undesirable decrease in the mean value away from the
measured mean. In Fig 3b the loss of energy from the system due to regularization has been
compensated so the pressure patterns are smoother (equivalent to having been filtered in k space
[1]), but are energetically equal to the measured pattern.

4. Concluding remarks

In both singular value discarding and Tikhonov regularization the question of how many
modes to exclude from the solution is critical: too few and there remains too much emphasis on
unreliable terms, too many and the sound power of the source is underestimated. The
compensation procedure presented ensures that the sound power of the equivalent source is
always in agreement with the measured sound power. Thus, the main source of error due to over-
regularization is avoided.
The most obvious application is to reduce errors where the use of optimization procedures for

choosing the regularization parameter [1,3] is too costly to perform. However, there are also
situations where reducing the complexity of a source model is desirable. In such cases,
compensation allows regularization to be thought of rather flexibly, as a means of smoothing,
such that the reconstructed pressure field is energetically correct, but contains less detail than the
measured field.
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The same arguments and the same procedures can be employed in inverse vibration problems
where unknown forces are calculated from measured vibration at a number of points. Although
the spatial averaged velocity in a system is not necessarily related to the power of a source in the
same way as for acoustic systems, it is nevertheless arguably the single most reliable indicator of
the overall energy in the system. Therefore, it is argued that a priority should be to predict it
correctly.
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Fig. 3. Directivity patterns at 3 kHz reconstructed from equivalent source with various degrees of Tikhonov

regularization b=0, .... b ¼ 0:1s2; - � - b ¼ s2; - - - b ¼ 10s2: (a) No compensation, and (b) with compensation.

Circles are measured results.
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